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Abstract

In this paper, power flow models were developed to analyze transversely vibrating finite Mindlin plate considering the

effects of shear distortion and rotatory inertia, which are very important at high frequencies. The energy governing

equations for far-field propagating out-of-plane waves in the Mindlin plate were newly derived by using the classical

displacement solutions for out-of-plane motions in the Mindlin plate. The derived energy governing equations are

composed of the energetics of three kinds of far-field propagating waves. Below the critical frequency, the energy governing

equation for only one kind of far-field propagating wave, which is analogous to that for flexural wave in the Kirchhoff

plate, is obtained. On the other hand, above the critical frequency, the energy governing equations for all three kinds of far-

field propagating waves are derived. The developed power flow models are in the general forms incorporating not only the

Mindlin plate theory but also the Kirchhoff plate theory. To verify the validity and accuracy of the derived models,

numerical analyses are performed for the case where the finite Mindlin plates are excited by a harmonic point force, and

the spatial distributions and levels of energy density and intensity obtained by the developed power flow solutions for the

Mindlin plate are compared with those obtained by the classical displacement solutions for the Mindlin plate, the

traditional power flow solutions, and the classical displacement solutions for the Kirchhoff plate for various excitation

frequencies and hysteretic damping factors.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The remarkable development of automotive, electronic and aerospace industries has been raising the
interest of high-frequency noise and vibration over the last decades. Consequently, suitable high-frequency
noise and vibration prediction tools for various built-up structures are required that can assist in identification
of structure-borne noise paths and potential hot spots (i.e. components with relatively high vibrational
energy). However, there is currently no one suitable method for predicting structure-borne noise of built-up
structures, such as automotive vehicles, household electric appliances and aircrafts, throughout the entire
audible frequency range (i.e. 20–20,000Hz).
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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At low frequencies, the deterministic approach based on traditional displacement solutions (i.e. modal
solutions) has been effectively used for prediction of structure-borne noise (vibration) of built-up structures.
Because of the relative large size of the wavelengths with respect to the size of each component in this
frequency region, small uncertainties in the properties of the short members will not impact their distinctly
resonant behavior. Therefore, the conventional finite element analysis (FEA) and boundary element analysis
(BEA) that apply numerical techniques to equations of dynamic motion have become firmly established as the
most widely used analytical vibration and noise prediction tools for practical engineers.

At high frequencies, the deterministic approach based on the analytical and asymptotic methods such as the
geometrical theory of diffraction (GTD), ray method and W.K.B. method have been proposed for prediction
of acoustic and vibrational responses since early times [1–5]. Though these deterministic methods provide
approximate expressions of the solution under high-frequency approximation, those are potentially
computationally expensive and time consuming to develop and check out analytical models for built-up
structures. In addition, there are other reasons that the deterministic approach is not practical for prediction
of structure-borne noise at high frequencies. The vibrational behavior of a structure at high frequencies
becomes increasingly dependent on fine structural details such as structural joints and boundaries, which
cannot be mathematically represented with sufficient accuracy in these frequencies range [6,7]. Also, high-
frequency acoustic and vibrational responses of nominally identical structures are observed to be different due
to fabrication tolerances allowed during manufacturing processes in mechanical industries [8,9]. Therefore,
because the large statistical variation observed at high frequencies is typical in practical engineering, the
usefulness of deterministic methods in the capacity of structure-borne noise prediction tool is limited.

As the alternative to deterministic approaches at high frequencies, the statistical approach was proposed
to predict modal- and frequency-averaged dynamic behavior of a structure. The statistical approach allows
for a much simpler description and measurement of the system, whether the field is described by modes or
wave [10]. However, the most obvious disadvantage of statistical approaches is that they give statistical
answers, which are always subject to some uncertainty. These characteristics of statistical approaches cause
the researchers concerned to develop theories of the variance, mean, and the confidence for prediction
intervals [11,12].

Statistical energy analysis (SEA), the representative analytical method of statistical approaches, is used to
effectively predict the space- and frequency-averaged behavior of built-up structures at high frequencies where
the modal density of structures is high. However, by SEA approximation, lumped dynamic characteristics are
used to represent continuous linear systems. Therefore, SEA can predict only a single acoustic or vibrational
energy value for each subsystem of a built-up structure. Additionally, because the power balance equation of
SEA is linear algebraic equation, the finite element and boundary element methods, which are very effective
numerical techniques for solving differential equations with arbitrary boundary conditions, cannot be applied
to SEA. Consequently, the FEA/BEA database model, which generally takes most of total analysis time at low
frequencies, cannot be used directly for SEA modeling [13].

Although SEA is one of statistical methods that are reasonable prediction tools at high frequencies, the
weaknesses of SEA have motivated researchers to investigate several alternative structure-borne sound
prediction tools that can be applicable to a numerical implementation such as finite element method and
boundary element method, and predict the spatial variation of vibrational responses in built-up structures.
Power flow analysis (PFA) is the representative product of such investigations. PFA can predict locally space-
and frequency-averaged vibrational behavior of arbitrary built-up structures by virtue of the governing
differential equation. The heat conduction type governing differential equation of PFA describes the state of
far-field vibrational energy, and makes it possible to effectively predict the far-field vibrational behavior of
arbitrary built-up structures with coarse mesh compared to conventional FEA using a numerical
implementation such as finite element method. PFA was first introduced by Belov et al. [14]. Nefske and
Sung implemented a finite element formulation of the vibrational energy equation to predict the vibrational
response of the Euler–Bernoulli beam [15]. Rods and Euler–Bernoulli beams were further studied by Wohlever
and Bernhard [16,17]. Bouthier and Bernhard extended the work of Wohlever et al. [18–21] to analyze the
energetics of a membrane, Kirchhoff plate and acoustic cavity. Park et al [22]. developed power flow models
for in-plane waves in thin plates. To derive the heat conduction type governing differential equations of PFA
based on plane wave components, two approximations are generally used. One is the local space-average over
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half a wavelength to remove the spatially harmonic component and the other is the exclusion of near-field
components which are dominant only near the discontinuities. Therefore, the total vibrational energy density
in PFA is approximated by the smooth far-field energy density and not the harmonic far-field energy density.

Although PFA is the more advanced vibrational prediction tool compared to SEA, the effort to improve the
theory of PFA has persisted. Langley showed that standard two-dimensional governing differential equation
of PFA based on plane wave components would be valid only for the structure having highly reverberant wave
field [23,24]. Consequently, Kim et al. suggested a modified governing differential equation of PFA in
cylindrical coordinate system for predicting the energy distribution in non-diffuse field [25]. Although the
wave field is effectively diffused on a rectangular plate in which numerous reflections of waves from the
boundaries occur, and can be approximated by the field of randomly oriented plane waves, the wave field is
not diffused on an infinite or circular plate which consists of cylindrical waves concentric with the driving
point. Therefore, the standard energy governing equation of PFA is only applicable to the reverberant energy
field of energy, and the modified energy governing equation of PFA is only applicable to the direct energy
field. Smith suggested a hybrid energy method in which the total vibration field is divided into a direct field
and a reverberant field [26]. It can predict the energy distribution over the whole plate that is equivalent to the
result by classical displacement solution in a point-excited plate regardless of wave field’s diffuseness. Le Bot
expanded the energy governing equation of PFA into modified differential equations for each of the plane
cylindrical and spherical wave fields for a general three-dimensional vibroacoustic problems [27,28].
Additionally, Lase and Jezequel suggested a General Energy Method (GEM) considering both active and
reactive energy components for predicting exact energy distribution in one-dimensional structures without
approximation from the deterministic point of view [29,30]. However, GEM has the weaknesses that it is more
computationally intensive than the classical displacement solution, and is not easy to be applied to higher-
order structures such as thin plates.

Until now, most researches on PFA have been restricted to the analysis of fundamental structures such as
rods, Euler–Bernoulli beams, membranes and Kirchhoff plates. Although PFA is a more suitable method for
high-frequency range than for low-frequency range, the existing traditional power flow models for out-of-
plane waves cannot consider very important phenomena in high-frequency range, namely the effects of shear
distortion and rotatory inertia. Therefore, power flow models by advanced theories such as the Timoshenko
beam theory and the Mindlin plate theory that account for these effects must be developed to improve the
prediction of vibrational behavior of a structure in the medium-to-high frequency ranges. In relation to this
work, Park et al. developed the power flow models for coupled Timoshenko beams. We newly derived the
energy governing equations for two kinds of flexural waves in the Timoshenko beam and extended the
application of the derived energy governing equations to coupled beam structures with general beam joints
through the wave transmission analyses [31,32]. However, the power flow model for out-of-plane waves in the
Mindlin plate has never been developed [33].

In this paper, the energy governing equations for three kinds of far-field propagating out-of-plane waves in
the Mindlin plate are derived. The derived energy governing equations for far-field out-of-plane waves is very
useful to predict the reverberant portion of the vibrational energy in a finite Mindlin plate. When the
excitation frequency is lower than the critical frequency determined by material properties and thickness of the
plate, the energy governing equation for only the bending dominant flexural wave, which is analogous to that
for the flexural wave in the Kirchhoff plate, is obtained. On the other hand, when the excitation frequency is
higher than the critical frequency, energy governing equations for all three kinds of far-field propagating out-
of-plane waves are obtained. Finally, to verify the accuracy and validity of the developed power flow models,
the developed power flow solutions and the classical solutions for out-of-plane motions in the Mindlin plate
are compared for several different conditions, and the classical and the developed PFA results for the Mindlin
plate are also compared with those for the Kirchhoff plate.

2. Mindlin plate theory

The Mindlin plate theory contains two rotations as field variables in addition to the transverse displacement
and can consider the effects of rotatory inertia and shear distortion, which are ignored in the Kirchhoff plate
theory. The effects of shear distortion rotatory inertia become increasingly important for propagating waves
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with shorter wavelengths at high frequencies. Generally, the effect of shear distortion is more significant than
that of rotatory inertia on the transverse vibration of a plate [7].

The equation of out-of-plane motion in the Mindlin plate can be obtained by using the Hamilton’s
variational principle. The Lagrangian is defined by subtracting the potential energy from the kinetic energy. In
the Mindlin plate, the kinetic and potential energy can be represented as, respectively,
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where w is the transverse displacement, ax and ay are the angles of rotation due to bending, r is the density, h is the
thickness, I ¼ h3/12 is the moment of inertia per unit width, D ¼ Eh3/[12(1�n2)] is the flexural rigidity, n is Poisson’s
ratio, E is Young’s modulus, k ¼ 20(1+n)/(24+25n+n2) is the shear correction factor and G ¼ E/[2(1+n)] is the
elastic modulus of shear of the plate. Using the Hamilton’s variational principle in the Lagrangian obtained by
Eqs. (1) and (2), the equations of out-of-plane motion in the unloaded Mindlin plate are obtained by [34]
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3. Group velocity of out-of-plane wave in the Mindlin plate

To obtain the general solution for the homogeneous undamped problem of out-of-plane motion in the
Mindlin plate [35], we can define the displacement potential functions f and c by, respectively,

ax ¼
qf
qx
þ
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qy
; and ay ¼

qf
qy
�

qc
qx

. (6,7)

Using these displacement potential functions, the equations of out-of-plane motion in the Mindlin plate can
be written in the form:
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From Eqs. (6) and (7), it follows that

r2f ¼
qax

qx
þ

qay

qy
and r2c ¼

qgxz

qy
�

qgyz

qx
, (11,12)

where gxz ¼ qw=qx� ax and gyz ¼ qw=qy� ay are shear strains.
Thus displacement potential function f involves both shear distortion and rotatory inertia, whereas c is a

function of shear alone [35]. Eq. (9) related to c is not coupled with the other variables and can be represented
as, for time-harmonic motion,

r2cþ
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� �
c ¼ 0. (13)

The general solution of Eq. (13), which is a far-field solution for o4oc1, is

cðx; y; tÞ ¼ ðAe�jk1xx þ Bejk1xxÞðCe�jk1yx þDejk1yxÞ ejot, (14)

where o is the excitation frequency, oc1 ¼
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p
, and k1x and k1y are x- and y-directional

components of wavenumber k1, respectively.
The wavenumber k1 of the displacement potential function c above the critical frequency (o4oc1) can be

approximated as
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By Eqs. (12) and (15), because the displacement potential function c with wavenumber k1 includes only the
effect of shear distortion, this wave can be called out-of-plane shear wave (OPSW) to avoid the confusion with
the shear wave of in-plane waves in a plate. From now on, the wave with wavenumber k1 is designated as
OPSW in this paper for the definite distinction among propagating waves in the Mindlin plate.

The general solution of Eqs. (8) and (10) for time-harmonic motion can be represented as

f
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where C is the constant coefficient, ~d is a vector of a constant number, and K2
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2+Ky
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wavenumber which is the sum of square wavenumbers of x- and y-directional wave components.
When Eq. (16) is substituted into Eqs. (8) and (10), the following matrix equation is obtained:
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To have a non-trivial solution, the following characteristic equation is obtained from the upper matrix
equation:
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For Eq. (18), the four roots are given by
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Out of the four roots, the two roots,
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are always imaginary, and the other two roots,
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are either real or imaginary depending on the frequency o. Therefore, the critical frequency determining
whether these roots are real or imaginary exists in variables f and w, and can be obtained by oc2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGh=rI

p
.

This critical frequency of the displacement potential function f and transverse displacement w is identical with
that of the displacement potential function c. Therefore, only a critical frequency for out-of-plane waves in
the Mindlin plate exists and can be represented as oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGh=rI

p
. In case of a steel plate (E ¼ 19.8� 1010 Pa,

r ¼ 7800 kg, n ¼ 0.28) of h ¼ 0.01m, the critical frequency of the plate is about fc ¼ 156 kHz.
In the fourth root term of Eq. (19), the term rho2=D, which is identical with the fourth power of the

bending wavenumber in the Kirchhoff plate, can be regarded as that related to the effect of bending and
the term of r2o4ð1=kG � I=DÞ2=4 can be regarded as that related to the effect of shear distortion, as shown in
Fig. 1. When opoc, the term related to bending effect grows dominant to that related to shear effect in
Eq. (20), as frequency decreases. When o4oc, the term related to shear effect grows dominant to that related
to bending effect in Eqs. (20) and (21), as frequency increases.

Therefore, below the critical frequency (opoc), only the wave with wavenumber k2 is the far-field solution
and its wavenumber can be approximated as
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where K1 ¼7jk2.
Fig. 1. The effects of shear, rotatory inertia, and bending on out-of-plane wavenumbers k2 and k3 of the Mindlin plate (steel, h ¼ 0.01m,

fc ¼ 156 kHz); ‘——’ is bending term and ‘- - - -’ is shear & rotatory inertia term.
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Above the critical frequency (o4oc), both kinds of waves with wavenumbers k2 and k3 are far-field
solutions and their wavenumbers can be approximated as, respectively,
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and
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where K1 ¼7jk2 and K2 ¼7jk3.
The displacement variables f and w are composed of two kinds of propagating waves above the critical

frequency and one kind of propagating wave below the critical frequency. Generally, the general solution of
displacement variables f and w can be represented as

fðx; y; tÞ
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where Ai, Bi, Ci and Di are vectors of a constant number.
However, every combination of x- and y-components in Eq. (25) is not an appropriate solution. The other

terms except the combination of x- and y-components of the same wavenumber are extraneous solutions.
Therefore, using one of the eigenvectors in Eq. (17), the appropriate general solution of displacement variables
f and w is obtained by
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35ejot. (26)

In Eq. (26), the out-of-plane wave with wavenumber k2 is influenced by bending below the critical frequency
and by shear above the critical frequency. On the other hand, the out-of-plane wave with wavenumber k3
propagates only above the critical frequency where the effect of shear is dominant. Based on these characteristics
of out-of-plane waves except OPSW, the out-of-plane waves with wavenumbers k2 and k3 can be called bending
dominant flexural wave (BDFW) and shear dominant flexural wave (SDFW), respectively. In this paper, the out-
of-plane waves with wavenumbers k2 and k3 are designated as BDFW and SDFW, respectively. Additionally,
though the effect of rotatory inertia is important above the critical frequency, the out-of-plane wave with
wavenumber k3 is named SDFW because the effect of shear is predominant to that of rotatory inertia.

Above the critical frequency, because three kinds of propagating waves exist, three kinds of group velocities
for far-field solutions can be obtained. On the other hand, only one kind of group velocity for a far-field
solution is obtained below the critical frequency.

The group velocity of OPSW with wavenumber k1 can be represented as the derivative

cg1 ¼
qo
qk1
¼

Gk1

ro
¼
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ro
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r
. (27)

Similarly, the group velocities of BDFW and SDFW with wavenumbers k2 and k3 can be represented as the
following derivatives, respectively,

cg2 ¼
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qk2
¼

2k3
2kGD� k2ro2ðDþ kGIÞ

k2
2roðDþ kGIÞ � 2r2o3I þ rhokG

(28)
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Fig. 2. The wavenumbers of propagating out-of-plane waves in steel Mindlin and Kirchhoff plates of h ¼ 0.01m:??, out-of-plane wave

with k1 in the Mindlin plate; ——, out-of-plane wave with k2 in the Mindlin plate; - � - � -, out-of-plane wave with k3 in the Mindlin plate;

- - - -, flexural wave with kf in the Kirchhoff plate.

Fig. 3. The group velocities of propagating out-of-plane waves in steel Mindlin and Kirchhoff plates of h ¼ 0.01m: ??, out-of-plane

wave with k1 in the Mindlin plate; ——, out-of-plane wave with k2 in the Mindlin plate; - � - � -, out-of-plane wave with k3 in the Mindlin

plate; - - - -, flexural wave with kf in the Kirchhoff plate.
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and

cg3 ¼
qo
qk3
¼

2k3
3kGD� k3ro2ðDþ kGIÞ

k2
3roðDþ kGIÞ � 2r2o3I þ rhokG

. (29)

In case of the Kirchhoff plate, the group velocity of a flexural wave is given by

cgK ¼
qo
qkf

¼ 2
Do2

rh

� �1=4

, (30)

where kf ¼ ðrho2=DÞ1=4 is the flexural wavenumber in the Kirchhoff plate.
Figs. 2 and 3 show the values of wavenumbers and group velocities of propagating out-of-plane waves in

steel Kirchhoff and Mindlin plates of h ¼ 0.01m, respectively, at various frequencies.
4. Derivation of time- and locally space-averaged far-field smooth energy density and intensity

4.1. Above the critical frequency

The general solution in Eqs. (14) and (26) is composed of far-field and near-field solutions. The near-field
solution is important in the low-frequency range where the wavelength is short, but the solution is negligible in
the high-frequency range. Noiseux showed that the far-field solution is useful for the power flow analysis of
vibrating plate in the high-frequency ranges [36].

Above the critical frequency, three kinds of propagating out-of-plane waves, that is to say, OPSW, BDFW
and SDFW, exist but the exponentially decaying evanescent wave, otherwise referred to as the near-field
solution, does not exist. Using Eqs. (14) and (26), the far-field solutions for the out-of-plane motion in the
damped Mindlin plate are represented as

c ¼ Ā1e
ð�jk1cxx�jk1cyxÞ þ Ā2e

ð�jk1cxxþjk1cyxÞ þ Ā3e
ðjk1cxx�jk1cyxÞ þ Ā4e

ðjk1cxxþjk1cyxÞ
� �

ejot (31)

and

f

w

( )
¼

rho2 � kGchk2
2c

�kGchk2
2c

8<
:

9=
; B̄1e

ð�jk2cxx�jk2cyyÞ þ B̄2e
ð�jk2cxxþjk2cyyÞ þ B̄3e

ðjk2cxx�jk2cyyÞ þ B̄4e
ðjk2cxxþjk2cyyÞ

	 
2
4

þ
rho2 � kGchk2

3c

�kGchk2
3c

8<
:

9=
; C̄1e

ð�jk3cxx�jk3cyyÞ þ C̄2e
ð�jk3cxxþjk3cyyÞ þ C̄3e

ðjk3cxx�jk3cyyÞ þ C̄4e
ðjk3cxxþjk3cyyÞ

	 
35 ejot,

(32)

where Āi, B̄i and C̄i are complex coefficients, the subscripts x and y in complex wavenumbers denote x- and y-
component of the wavenumber, respectively, Gc ¼ G(1+jZ) is the complex elastic modulus of shear, which is
represented as hysteretic damping factor Z, complex wavenumbers are

k1c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrIo2 � kGchÞ=GcI

q
, (33)

k2c;3c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2

2

1

kGc

þ
I

Dc

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4

1

kGc

�
I

Dc

� �2

þ
rho2

Dc

svuut
. (34,35)

The total energy density is the sum of the potential and kinetic energy densities in Eqs. (1) and (2). Since the
average values of energy density and intensity are more interesting than instantaneous values, the energy
density and intensity are time-averaged by averaging over a period [37]. The time-averaged total energy
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density for out-of-plane motion in the Mindlin plate can be represented as

hei ¼ Re
rh

4

qw

qt

� �
qw

qt

� �n

þ
rI

4

qax

qt

� �
qax

qt

� �n

þ
qay

qt

� �
qay

qt

� �n� ��

þ
D

4

qax

qx

� �
qax

qx

� �n

þ
qay

qy

� �
qay

qy

� �n

þ 2n
qax

qx

� �
qay

qy

� �n� �

þ
GI

4

qax

qy
þ

qay

qx

� �
qax

qy
þ

qay

qx

� �n� �
þ

kGh

4

�
qw

qx
� ax

� �
qw

qx
� ax

� �n

þ
qw

qy
� ay

� �
qw

qy
� ay

� �n� ��
, (36)

where /S operator indicates a time-averaged quality and the asterisk notation denotes a complex conjugate.
The time-averaged total intensity for out-of-plane motion in the Mindlin plate is transmitted by the shear
force and the moment, and can be represented as hIi ¼ hIxi~i þ hIyi~j, where

hIxi ¼
1

2
Re �D

qax

qx
þ n

qay

qy

� �
qax

qt

� �n

� ð1� nÞ
D

2

qax

qy
þ

qay

qx

� �
qay

qt

� �n�

� kGh
qw

qx
� ax

� �
qw

qt

� �n�

and

hIyi ¼
1

2
Re �D

qay

qy
þ n

qax

qx

� �
qay

qt

� �n

� ð1� nÞ
D

2

qax

qy
þ

qay

qx

� �
qax

qt

� �n�

� kGh
qw

qy
� ay

� �
qw

qt

� �n�
. (37,38)

In lightly damped plates, i.e., Z51, using Eqs. (33)–(35), the real and imaginary components of the complex
wavenumbers k1c ¼ k11+jk12, k2c ¼ k21+jk22 and k3c ¼ k31+jk32, respectively, are well approximated as

k11 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rIo2 � kGh

GI

r
; k12 ¼ �

Z
2

 �
k11,

k21;31 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2

2

1

kG
þ

I

D

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4

1

kG
�

I

D

� �2

þ
rho2

D

svuut
and

k22;32 ¼ �
Z
2

 �
k21;31 (39 2 44)

Substituting Eqs. (6), (7), (31) and (32) into Eqs. (36)–(38), the time-averaged far-field energy density and
intensity, whose primary variables are w, f and c, are obtained (Appendix A).

Assuming that hysteretic damping for the Mindlin plate is sufficiently small, the terms on the order of
square or more of Z can be neglected. Additionally, the local space-average is used to eliminate the terms
which are spatially harmonic in the time-averaged far-field energy density and intensity. By these procedures,
the time- and locally space-averaged far-field smooth energy density and the components of the time- and
locally space-averaged far-field smooth intensity of out-of-plane waves in the Mindlin plate can be
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approximated as (Appendix A)

hēi ¼ 1
4
½ðrIo2 þ kGhÞk2

11 þ GIk4
11�

� ðjĀ1j
2eZð�k11xx�k11yyÞ þ jĀ2j

2eZð�k11xxþk11yyÞ þ jĀ3j
2eZðk11xx�k11yyÞ þ jĀ4j

2eZðk11xxþk11yyÞÞ

þ 1
4
½ðrho2 � kGhk2

21Þ
2
ðDk4

21 þ rIo2k2
21Þ þ k2

21ðrho2ÞðkGhÞðkGhk2
21 þ rho2Þ�

� ðjB̄1j
2eZð�k21xx�k21yyÞ þ jB̄2j

2eZð�k21xxþk21yyÞ þ jB̄3j
2eZðk21xx�k21yyÞ þ jB̄4j

2eZðk21xxþk21yyÞÞ

þ 1
4
½ðrho2 � kGhk2

31Þ
2
ðDk4

31 þ rIo2k2
31Þ þ k2

31ðrho2ÞðkGhÞðkGhk2
31 þ rho2Þ�

� ðjC̄1j
2eZð�k31xx�k31yyÞ þ jC̄2j

2eZð�k31xxþk31yyÞ þ jC̄3j
2eZðk31xx�k31yyÞ þ jC̄4j

2eZðk31xxþk31yyÞÞ, (45)

hĪ xi ¼
1

2

D

2
ð1� nÞok11xk2

11

� �
� ðjĀ1j

2eZð�k11xx�k11yyÞ þ jĀ2j
2eZð�k11xxþk11yyÞ � jĀ3j

2eZðk11xx�k11yyÞ � jĀ4j
2eZðk11xxþk11yyÞÞ

þ
1

2
½Dðrho2 � kGhk2

21Þ
2ok21xk2

21 þ ðrho2Þðok21xÞðkGhk21Þ
2
�

� ðjB̄1j
2eZð�k21xx�k21yyÞ þ jB̄2j

2eZð�k21xxþk21yyÞ � jB̄3j
2eZðk21xx�k21yyÞ � jB̄4j

2eZðk21xxþk21yyÞÞ

þ
1

2
½Dðrho2 � kGhk2

31Þ
2ok31xk2

31 þ ðrho2Þðok31xÞðkGhk31Þ
2
�

� ðjC̄1j
2eZð�k31xx�k31yyÞ þ jC̄2j

2eZð�k31xxþk31yyÞ � jC̄3j
2eZðk31xx�k31yyÞ � jC̄4j

2eZðk31xxþk31yyÞÞ (46)

and

hĪ yi ¼
1

2

D

2
ð1� nÞok11yk2

11

� �
� ðjĀ1j

2eZð�k11xx�k11yyÞ � jĀ2j
2eZð�k11xxþk11yyÞ þ jĀ3j

2eZðk11xx�k11yyÞ � jĀ4j
2eZðk11xxþk11yyÞÞ

þ
1

2
½Dðrho2 � kGhk2

21Þ
2ok21yk2

21 þ ðrho2Þðok21yÞðkGhk21Þ
2
�

� ðjB̄1j
2eZð�k21xx�k21yyÞ � jB̄2j

2eZð�k21xxþk21yyÞ þ jB̄3j
2eZðk21xx�k21yyÞ � jB̄4j

2eZðk21xxþk21yyÞÞ

þ
1

2
½Dðrho2 � kGhk2

31Þ
2ok31yk2

31 þ ðrho2Þðok31yÞðkGhk31Þ
2
�

� ðjC̄1j
2eZð�k31xx�k31yyÞ � jC̄2j

2eZð�k31xxþk31yyÞ þ jC̄3j
2eZðk31xx�k31yyÞ � jC̄4j

2eZðk31xxþk31yyÞÞ, (47)

where h i means the time- and locally space-averaged quantity.
As shown in Eqs. (45)–(47), above the critical frequency, the time- and locally space-averaged far-field

smooth energy density and intensity of out-of-plane waves can be separated into the terms of each kind of
propagating wave, which is OPSW, BDFW or SDFW.
4.2. Below the critical frequency

When opoc, only one kind of out-of-plane wave, BDFW, is the far-field solution and the other kinds of
waves are near-field solutions. Therefore, below the critical frequency, the far-field solution neglecting near-
field solutions is given by

f

w

� �
¼

rho2 � kGchk2
2c

�kGchk2
2c

( )
ðB̄1e

ð�jk2cxx�jk2cyyÞ þ B̄2e
ð�jk2cxxþjk2cyyÞ þ B̄3e

ðjk2cxx�jk2cyyÞ þ B̄4e
ðjk2cxxþjk2cyyÞÞ ejot. (48)

The displacement potential function c, OPSW, is a near-field solution and is neglected in the far-field
energetics.

In lightly damped plates, using Eq. (34), because the effect of bending is dominant in these frequency ranges,
the real and imaginary components of the complex wavenumber k2c ¼ k21+jk22, respectively, are well
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approximated as

k21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2

2

1

kG
þ

I

D

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4

1

kG
�

I

D

� �2

þ
rho2

D

svuut
,

and

k22 ¼ �
Z
4

 �
k21. (49,50)

Like the former case above the critical frequency, substituting Eqs. (6), (7) and (48) into Eqs. (36)–(38), the
time-averaged far-field energy density and the components of the time-averaged far-field intensity for BDFW
are obtained. Assuming that hysteretic damping is sufficiently small (Z51), the terms on the order of square or
more of Z are neglected. The local space-average is also used to eliminate the terms which are spatially
harmonic in the time-averaged energy density and intensity. Below the critical frequency, the time- and locally
space-averaged far-field smooth energy density and the components of the time- and locally space-averaged
far-field smooth intensity for out-of-plane waves in the Mindlin plate can be approximated as (Appendix A)

hēi ¼ 1
4
½ðrho2 � kGhk2

21Þ
2
ðDk4

21 þ rIo2k2
21Þ þ k2

21ðrho2ÞðkGhÞðkGhk2
21 þ rho2Þ�

� ðj½B̄1�
þþj2 þ j½B̄2�

þ�j2 þ j½B̄3�
�þj2 þ j½B̄4�

��j2Þ, (51)

hĪ xi ¼
1
2
½Dðrho2 � kGhk2

21Þ
2ok21xk2

21 þ ðrho2Þðok21xÞðkGhk21Þ
2
�

� ðj½B̄1�
þþj2 þ j½B̄2�

þ�j2 � j½B̄3�
�þj2 � j½B̄4�

��j2Þ (52)

and

hĪ yi ¼
1
2
½Dðrho2 � kGhk2

21Þ
2ok21yk2

21 þ ðrho2Þðok21yÞðkGhk21Þ
2
�

� ðj½B̄1�
þþj2 � j½B̄2�

þ�j2 þ j½B̄3�
�þj2 � j½B̄4�

��j2Þ, (53)

where j½ ���j2 ¼ ½ �2 � expf2ð�k22xx� k22yyÞg.
As shown in Eqs. (51)–(53), below the critical frequency, the time- and locally space-averaged far-field

smooth energy density and the components of the time- and locally space-averaged far-field smooth intensity
are expressed in only terms related to BDFW with wavenumber k2, which is similar to the energetics of the
flexural wave in the Kirchhoff plate model.

5. Derivation of energy governing equations for out-of-plane waves in the Mindlin plate

5.1. Above the critical frequency

Above the critical frequency, the time- and locally space-averaged far-field smooth energy density and
intensity, which are expressed by Eqs. (45), and (46)–(47), respectively, are composed of three kinds of out-of-
plane waves, OPSW, BDFW and SDFW. Both far-field smooth energy density and intensity can be separated
into the terms of each out-of-plane wave. Therefore, the time- and locally space-averaged total far-field
smooth energy density and intensity are expressed as, respectively,

hēi ¼ hē1i þ hē2i þ hē3i (54)

and

hĪi ¼ hĪ1i þ hĪ2i þ hĪ3i. (55)

In Eqs. (54) and (55), ‘‘1’’, ‘‘2’’ and ‘‘3’’ in the subscripts denote OPSW, BDFW and SDFW, respectively.
The time- and locally space-averaged far-field smooth energy density and intensity of OPSW with

wavenumber k1c are given by, respectively,

hē1i ¼
1

4
½ðrIo2 þ kGhÞk2

11 þ GIk4
11� � ðj½Ā1�

þþj2 þ j½Ā2�
þ�j2 þ j½Ā3�

�þj2 þ j½Ā4�
��j2Þ, (56)
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hĪ1xi ¼
1

2

D

2
ð1� nÞok11xk2

11

� �
� ðj½Ā1�

þþj2 þ j½Ā2�
þ�j2 � j½Ā3�

�þj2 � j½Ā4�
��j2Þ, (57)

and

hĪ1yi ¼
1

2

D

2
ð1� nÞok11yk2

11

� �
� ðj½Ā1�

þþj2 � j½Ā2�
þ�j2 þ j½Ā3�

�þj2 � j½Ā4�
��j2Þ, (58)

where j½ ���j2 ¼ ½ �2 � expf2ð�k12xx� k12yyÞg.
The time- and locally space-averaged far-field smooth energy density and intensity of BDFW with

wavenumber k2c are given by, respectively,

hē2i ¼
1

4
½ðrho2 � kGhk2

21Þ
2
ðDk4

21 þ rIo2k2
21Þ þ k2

21ðrho2ÞðkGhÞðkGhk2
21 þ rho2Þ�

� ðj½B̄1�
þþj2 þ j½B̄2�

þ�j2 þ j½B̄3�
�þj2 þ j½B̄4�

��j2Þ, (59)

hĪ2xi ¼
1

2
½Dðrho2 � kGhk2

21Þ
2ok21xk2

21 þ ðrho2Þðok21xÞðkGhk21Þ
2
�

� ðj½B̄1�
þþj2 þ j½B̄2�

þ�j2 � j½B̄3�
�þj2 � j½B̄4�

��j2Þ (60)

and

hĪ2yi ¼
1

2
½Dðrho2 � kGhk2

21Þ
2ok21yk2

21 þ ðrho2Þðok21yÞðkGhk21Þ
2
�

� ðj½B̄1�
þþj2 � j½B̄2�

þ�j2 þ j½B̄3�
�þj2 � j½B̄4�

��j2Þ, (61)

where j½ ���j2 ¼ ½ �2 � expf2ð�k22xx� k22yyÞg.
The time- and locally space-averaged far-field smooth energy density and intensity of SDFW with

wavenumber k3c are given by, respectively,

hē3i ¼
1

4
½ðrho2 � kGhk2

31Þ
2
ðDk4

31 þ rIo2k2
31Þ þ k2

31ðrho2ÞðkGhÞðkGhk2
31 þ rho2Þ�

� ðj½C̄1�
þþj2 þ j½C̄2�

þ�j2 þ j½C̄3�
�þj2 þ j½C̄4�

��j2Þ, (62)

hĪ3xi ¼
1

2
½Dðrho2 � kGhk2

31Þ
2ok31xk2

31 þ ðrho2Þðok31xÞðkGhk31Þ
2
�

� ðj½C̄1�
þþj2 þ j½C̄2�

þ�j2 � j½C̄3�
�þj2 � j½C̄4�

��j2Þ (63)

and

hĪ3yi ¼
1

2
½Dðrho2 � kGhk2

31Þ
2ok31yk2

31 þ ðrho2Þðok31yÞðkGhk31Þ
2
�

� ðj½C̄1�
þþj2 � j½C̄2�

þ�j2 þ j½C̄3�
�þj2 � j½C̄4�

��j2Þ, (64)

where j½���j2 ¼ ½�2 � expf2ð�k32xx� k32yyÞg.
Above the critical frequency, because the effect of shear is dominant to that of bending, the squares of k11,

k21 and k31, which are the real parts of the wavenumbers, can be approximated as, respectively,

k2
11 �

ro2

G
; k2

21 �
ro2

kG
; and k2

31 �
rIo2

D
. (65267)
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Using Eqs. (65)–(67), the group velocities of OPSW, BDFW and SDFW can be approximated by,
respectively,

cg1 ¼
qo
qk11
�

G

rok11
¼

ffiffiffiffi
G

r

s
, (68)

cg2 ¼
qo
qk21
�

kGk21

ro
¼

kG

ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2

2

1

kG
þ

I

D

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4

1

kG
�

I

D

� �2

þ
rho2

D

svuut
, (69)

and

cg3 ¼
qo
qk31
�

Dk31

rIo
¼

D

rIo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2

2

1

kG
þ

I

D

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4

1

kG
�

I

D

� �2

þ
rho2

D

svuut
. (70)

Substituting Eqs. (65)–(67) into Eqs. (56)–(64), the relationships between the time- and locally space-averaged
far-field smooth energy density and intensity of each propagating out-of-plane waves are derived by, respectively,

hĪ1i ¼ �
c2g1

Zo
q
qx
~i þ

q
qy
~j

� �
hē1i, (71)

hĪ2i ¼ �
c2g2

Zo
q
qx
~i þ

q
qy
~j

� �
hē2i (72)

and

hĪ3i ¼ �
c2g3

Zo
q
qx
~i þ

q
qy
~j

� �
hē3i. (73)

For a steady state elastic system, the power balance equation can be written as

r � Iþ pdiss ¼ pin, (74)

where pdiss and pin are the dissipated power due to the damping of the system and the input power, respectively.
From the works of Cremer and Heckl [7], the time-averaged dissipated power in an elastic medium with small
structural hysteretic damping is proportional to the time-averaged total energy density in the form of

pdiss ¼ Zohei. (75)

Substituting Eq. (75) into Eq. (74), the second-order partial differential equations, which set the far-field
smooth energy density related to each kind of propagating wave as a primary variable, can be derived by,
F� (x0,y0) e j�t

h

Lx

Ly

x

y

z

Fig. 4. Simply supported, transversely vibrating rectangular Mindlin plate excited by a harmonic point force.
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respectively, using Eqs. (71)–(73),

�
c2g1

Zo
q2

qx2
þ

q2

qy2

� �
hē1i þ Zohē1i ¼ p1;in, (76)

�
c2g2

Zo
q2

qx2
þ

q2

qy2

� �
hē2i þ Zohē2i ¼ p2;in (77)

and

�
c2g3

Zo
q2

qx2
þ

q2

qy2

� �
hē3i þ Zohē3i ¼ p3;in. (78)
Fig. 5. The energy density level distributions of classical solutions of the Mindlin plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz. The

reference energy density is 10�12 J/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.



ARTICLE IN PRESS
Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 317 (2008) 800–840 815
5.2. Below the critical frequency

Below the critical frequency, the time- and locally space-averaged far-field smooth energy density and
intensity, which are expressed by Eqs. (51), and (52) and (53), respectively, are composed of only one kind of
out-of-plane wave, BDFW. In these frequency ranges, because the bending effect is dominant over the shear
and rotatory effects, the wavenumber k21, which is the real part of k2c, can be approximated differently from
k21 above the critical frequency by

k21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2

2

1

kG
þ

I

D

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2o4

4

1

kG
�

I

D

� �2

þ
rho2

D

svuut
�

rho2

D

� �1=4

. (79)
Fig. 6. The energy density level distributions of power flow solutions of the Mindlin plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference energy density is 10�12 J/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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Using Eq. (79), the group velocity of BDFW with wavenumber k2c can be expressed by

cg2 ¼
qo
qk21
� 2k21

ffiffiffiffiffiffi
D

rh

s
¼ 2

rho2

D

� �1=4
ffiffiffiffiffiffi
D

rh

s
¼ 2

o2D

rh

� �1=4

. (80)

These approximated wavenumber and group velocity are identical to those of the flexural wave in
the Kirchhoff plate. Substituting Eq. (79) into Eqs. (51)–(53), the relationship between the time- and locally
Fig. 7. The energy density level distributions of classical solutions of the Kirchhoff plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference energy density is 10�12 J/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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space-averaged far-field smooth energy density and intensity of BDFW is derived by

hĪ2i ¼ �
c2g2

Zo
q
qx
~i þ

q
qy
~j

� �
hē2i. (81)

By Eqs. (74), (75) and (81), below the critical frequency, the energy governing equation for BDFW is obtained by

�
c2g2

Zo
q2

qx2
þ

q2

qy2

� �
hē2i þ Zohē2i ¼ p2;in. (82)

Below the critical frequency, the energetics of BDFW in Eq. (82) is very analogous to that of the flexural wave in
the Kirchhoff plate.
Fig. 8. The energy density level distributions of power flow solutions of the Kirchhoff plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference energy density is 10�12 J/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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6. Power flow analysis of a rectangular Mindlin plate

6.1. Power flow solutions for out-of-plane waves in the Mindlin plate

To verify the derived power flow models for out-of-plane waves in the Mindlin plate, numerical analyses
were performed for the finite Mindlin plate simply supported along its edges and excited by a transverse
harmonic point force as shown in Fig. 4.
Fig. 9. The comparison of the energy density distributions along the line y ¼ Ly/2 of the plate (h ¼ 0.001m, fc ¼ 1.56MHz) when

f ¼ 1 kHz. The reference energy density is 10�12 J/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1: ——, PFA solution of the Mindlin plate; - - - -, PFA

solution of the Kirchhoff plate; - � - � -, classical solution of the Mindlin plate; ??, classical solution of the Kirchhoff plate.
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When a point force is excited at (x0,y0) of the plate, the energy governing equations for out-of-plane waves
(OPSW, BDFW and SDFW) in Eqs. (76)–(78) are expressed by

�
c2gi

Zo
q2

qx2
þ

q2

qy2

� �
hēii þ Zohēii ¼ pi;indðx� x0Þdðy� y0Þ ði ¼ 1; 2; 3Þ: (83)

Because there is no power outflow from the simply supported boundary, the energy density solutions
(Navier solutions) of Eq. (83) can be expressed by the double Fourier series of the cosine functions with
Fig. 10. The intensity level distributions of classical solutions of the Mindlin plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference intensity is 10�12W/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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respect to the spatial variables x and y, respectively [13]:

hēiiðx; yÞ ¼
X1
m¼0

X1
n¼0

Ei;mn cos
mpx

Lx

� �
cos

npy

Ly

� �
ði ¼ 1; 2; 3Þ, (84)
Fig. 11. The intensity level distributions of power flow solutions of the Mindlin plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference intensity is 10�12W/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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where Ei,mn is the coefficient of (m,n) mode of the energy density hēii, Lx and Ly are the dimensions of the plate
as shown in Fig. 4, and ‘‘1’’, ‘‘2’’ and ‘‘3’’ in the subscripts denote OPSW, BDFW and SDFW, respectively.

pi;indðx� x0Þdðy� y0Þ ¼
X1
m¼0

X1
n¼0

Pi;mn cos
mpx

Lx

� �
cos

npy

Ly

� �
ði ¼ 1; 2; 3Þ, (85)
Fig. 12. The intensity level distributions of classical solutions of the Kirchhoff plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference intensity is 10�12W/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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where the power coefficient of (m,n) mode, Pi,mn is

Pi;mn ¼
zi;mn

LxLy

pi;mn cos
mpx0

Lx

� �
cos

npy0

Ly

� �
ði ¼ 1; 2; 3Þ, (86)

where

zi;mn ¼

1; m ¼ 0 and n ¼ 0

2; ðma0 and n ¼ 0Þ or ðm ¼ 0 and na0Þ

4; ma0 and na0

8><
>: . (87)
Fig. 13. The intensity level distributions of power flow solutions of the Kirchhoff plate (h ¼ 0.001m, fc ¼ 1.56MHz) when f ¼ 1 kHz.

The reference intensity is 10�12W/m2: (a) Z ¼ 0.01, (b) Z ¼ 0.1.
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Substituting Eqs. (84)–(86) into Eq. (83), the modal participation factors of energy densities are represented as

Ei;mn ¼
ðzi;mn=LxLyÞpi;in cosðmpx0=LxÞ cosðnpy0=LyÞ

ðc2gi=ZoÞfðmp=LxÞ
2
þ ðnp=LyÞ

2
g þ Zo

ði ¼ 1; 2; 3Þ. (88)

By Eqs. (54) and (55), the time- and locally space-averaged total far-field smooth energy density and intensity
solutions are expressed by, respectively,

hēi ¼
X3
i¼1

X1
m¼0

X1
n¼0

Ei;mn cos
mpx

Lx

� �
cos

npy

Ly

� �" #
, (89)
Fig. 14. The energy density level distributions of classical solutions of the Mindlin plate (h ¼ 0.01m, fc ¼ 156kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 5 kHz, (b) f ¼ 200 kHz.



ARTICLE IN PRESS
Y.-H. Park, S.-Y. Hong / Journal of Sound and Vibration 317 (2008) 800–840824
and

hĪi ¼
X3
i¼1

c2gi

Zo

X1
m¼0

X1
n¼0

Ei;mn

mp
Lx

� �
sin

mpx

Lx

� �
cos

npy

Ly

� �( )" #
~i

þ
X3
i¼1

c2gi

Zo

X1
m¼0

X1
n¼0

Ei;mn

np
Ly

� �
cos

mpx

Lx

� �
sin

npy

Ly

� �( )" #
~j. (90)
Fig. 15. The energy density level distributions of power flow solutions of the Mindlin plate (h ¼ 0.01m, fc ¼ 156kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 5 kHz, (b) f ¼ 200 kHz.
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6.2. Numerical examples

Numerical analyses were performed for a finite rectangular isotropic plate simply supported along its edges
and excited by a transverse harmonic point force. The energy density and intensity distributions obtained by
the developed power flow models for the Mindlin plate were compared with the results obtained by the
classical solutions for the Mindlin plate (Appendix B), and with the classical solutions and the power flow
solutions for the Kirchhoff plate [20], respectively. In the first example, the dimensions of a plate were
Lx�Ly� h ¼ 1m� 1m� 0.001m, as shown in Fig. 4, and the material properties of a plate were assumed to
be the same as those of steel. The critical frequency of this plate was about fc ¼ 1.56MHz. The external point
force was located at x0 ¼ Lx/2 and y0 ¼ Ly/2 in the plate and its amplitude was F ¼ 1N. According to
Fig. 16. The energy density level distributions of classical solutions of the Kirchhoff plate (h ¼ 0.01m, fc ¼ 156 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 5 kHz, (b) f ¼ 200 kHz.
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excitation frequency, the time-averaged input power used to obtain the power flow solution was calculated as
follows:

pin ¼
1

2
Re ðFejotÞ �

qwðx0; y0; tÞ

qt

� �n� �
¼

p1;in ðopocÞ

p1;in þ p2;in þ p3;in ðo4ocÞ
, (91)

where qw=qt was obtained by the classical solution expressed as Eq. (B.10).
For excitation frequency of 1 kHz, the spatial distributions of the energy density and intensity obtained by

each solution for various values of hysteretic damping (Z ¼ 0.01, Z ¼ 0.1) are shown in Figs. 5 and 6. For the
sufficient accuracy of Navier solutions, 25,000 lower modal terms of the series were used to obtain the classical
and PFA results, respectively. Generally, to guarantee the sufficient convergence, the Navier solutions for the
Fig. 17. The energy density level distributions of power flow solutions of the Kirchhoff plate (h ¼ 0.01m, fc ¼ 156 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 5 kHz, (b) f ¼ 200 kHz.
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Mindlin plate model need much more modal terms than those for the Kirchhoff plate model. In Figs. 5 and 6,
the developed PFA solutions for the Mindlin plate represent well the global variation of the classical solutions
for the Mindlin plate like the cases of the Kirchhoff plate shown in Figs. 7 and 8, regardless of the hysteretic
damping of the plate. These results can be clearly observed in Fig. 9, which shows energy densities of each
solution along the line x ¼ Lx/2. In results by both plate models, as the hysteretic damping of the plate
increases, the global variations of energy densities predicted by the classical and PFA solutions increase, as
Fig. 18. The comparison of the energy density distributions along the line y ¼ Ly/2 of the plate (h ¼ 0.01m, fc ¼ 156 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 5 kHz, (b) f ¼ 200 kHz: ——, PFA solution of the Mindlin plate; - - - -, PFA solution of

the Kirchhoff plate; - � - � -, classical solution of the Mindlin plate; ??, classical solution of the Kirchhoff plate.
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seen in Figs. 5–8, and the spatial distributions of energy densities predicted by the classical solution and the
PFA solution become more similar due to the increase of modal overlap in the classical solution except the
vicinity of the driving point where the direct field is dominant. Additionally, because the excitation frequency
(1 kHz) is much lower than the critical frequency (fc ¼ 1.56MHz) of a plate, the effects of shear distortion and
rotatory inertia are not dominant over the effect of bending. Therefore, as shown in Fig. 9, the results obtained
by the Mindlin plate model are almost equivalent to those by the Kirchhoff plate model. Figs. 10 and 11 show
the intensity distributions predicted by the classical solution and PFA solution for the Mindlin plate model,
respectively. Figs. 12 and 13 show the intensity distributions predicted by the classical solution and PFA
solution for the Kirchhoff plate model, respectively. Like the previous case of energy density, the spatial
intensity distributions of the classical solution and the PFA solution for each plate model become more similar
Fig. 19. The energy density level distributions of classical solutions of the Mindlin plate (h ¼ 0.04m, fc ¼ 39.1 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 4 kHz, (b) f ¼ 70 kHz.
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as the hysteretic damping increases, and the spatial intensity distributions obtained by the Mindlin and
Kirchhoff plate models are almost identical because of low excitation frequency, as shown in Figs. 10–13.

For the next examples, the thickness and hysteretic damping of the plate were set to be h ¼ 0.01m and
Z ¼ 0.01, respectively. The critical frequency of this plate was about 156 kHz. In Figs. 14 and 15, the developed
PFA solutions for the Mindlin plate represent well the global variation of the classical solutions for the
Mindlin plate like the cases of the Kirchhoff plate shown in Figs. 16 and 17, regardless of the excitation
frequency. In results by both plate models, as the excitation frequency increases, the energy density decreases
fast with increasing distance from the driving point. In Fig. 18(a), though the excitation frequency is lower
than the critical frequency, the energy density distributions obtained by the classical and PFA solutions for the
Mindlin plate differ from those obtained by those for the Kirchhoff plate because the effects of shear
Fig. 20. The energy density level distributions of power flow solutions of the Mindlin plate (h ¼ 0.04m, fc ¼ 39.1 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 4 kHz, (b) f ¼ 70 kHz.
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distortion and rotatory inertia are not ignorable. When the excitation frequency is higher than the critical
frequency, because the effects of shear distortion and rotatory inertia are dominant, the differences of spatial
energy distributions as well as energy levels predicted by the Mindlin and Kirchhoff plate models are more
prominent as shown in Fig. 18(b).

In the last examples, only the thickness of the plate in the second example is changed to h ¼ 0.04m. This
plate model has the critical frequency of fc ¼ 39.1 kHz, which is relatively lower than the critical frequencies of
previous examples. Therefore, the effects of shear distortion and rotatory inertia become more important at
low frequencies in this example than in previous examples. Figs. 19 and 20 show the effects of shear distortion
and rotatory inertia are dominant even at low frequencies and the energy model for the Mindlin plate is
derived successfully (see Figs. 21 and 22). In Fig. 23, the spatial distributions and levels of energy densities
Fig. 21. The energy density level distributions of classical solutions of the Kirchhoff plate (h ¼ 0.04m, fc ¼ 39.1 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 4 kHz, (b) f ¼ 70 kHz.
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predicted by the Mindlin and Kirchhoff plate models are considerably different at both 4 and 70 kHz, which
are lower and higher than the critical frequency, respectively.

7. Conclusion

For the improved vibrational analysis for out-of-plane motions in a two-dimensional plate structure in the
medium-to-high-frequency ranges, power flow models were newly developed for propagating out-of-plane
waves in a finite Mindlin plate. The derived power flow models have different forms depending on the exciting
frequency and are the general energetic model for out-of-plane motion in the plate, incorporating not only the
Fig. 22. The energy density level distributions of power flow solutions of the Kirchhoff plate (h ¼ 0.04m, fc ¼ 39.1 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 4 kHz, (b) f ¼ 70 kHz.
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Kirchhoff plate theory used for the conventional power flow model but also the Mindlin plate theory. Below
the critical frequency, the energy governing equation for one propagating out-of-plane wave, BDFW, like that
of the Kirchhoff plate is obtained. Above the critical frequency, the energy governing equations for three kinds
of propagating out-of-plane waves, OPSW, BDFW, and SDFW, are found.

To verify the developed power flow models, numerical analyses of various examples were performed. As
expected, the developed power flow solutions for the Mindlin plate agreed well with the global variation of the
Fig. 23. The comparison of the energy density distributions along the line y ¼ Ly/2 of the plate (h ¼ 0.04m, fc ¼ 39.1 kHz) when Z ¼ 0.01.

The reference energy density is 10�12 J/m2: (a) f ¼ 4 kHz, (b) f ¼ 70 kHz: ——, PFA solution of the Mindlin plate; - - - -, PFA solution of

the Kirchhoff plate; - � - � -, classical solution of the Mindlin plate; ??, classical solution of the Kirchhoff plate.
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classical solutions for the Mindlin plate at various excitation frequencies and hysteretic damping factors.
Additionally, as the exciting frequency increases and the plate becomes thicker, the developed power flow
solutions for the Mindlin plate become greatly different from the traditional power flow solutions for the
Kirchhoff plate. Therefore, the developed power flow model for out-of-plane motion in the Mindlin plate can
be an improved tool for prediction of diffuse vibrational behavior in a plate at medium-to-high frequencies.
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Appendix A. Derivation of time- and locally space-averaged far-field smooth energy density and intensity

A.1. Above the critical frequency

Above the critical frequency, all kinds of out-of-plane waves of general solution in Eqs. (31) and (32) are
far-field components. The far-field solutions composed of transverse displacement w, displacement potential
functions f and c by Eqs. (31) and (32), can be rewritten as, respectively,

w ¼ P1e
ð�jk2cxx�jk2cyyÞ þ P2e

ð�jk2cxxþjk2cyyÞ þ P3e
ðjk2cxx�jk2cyyÞ þ P4e

ðjk2cxxþjk2cyyÞ
� ��
þ Q1e

ð�jk3cxx�jk3cyyÞ þQ2e
ð�jk3cxxþjk3cyyÞ þQ3e

ðjk3cxx�jk3cyyÞ þQ4e
ðjk3cxxþjk3cyyÞ

� ��
ejot, (A.1)

f ¼ R1e
ð�jk2cxx�jk2cyyÞ þ R2e

ð�jk2cxxþjk2cyyÞ þ R3e
ðjk2cxx�jk2cyyÞ þ R4e

ðjk2cxxþjk2cyyÞ
� ��
þ S1e

ð�jk3cxx�jk3cyyÞ þ S2e
ð�jk3cxxþjk3cyyÞ þ S3e

ðjk3cxx�jk3cyyÞ þ S4e
ðjk3cxxþjk3cyyÞ

� ��
ejot (A.2)

and

c ¼ T1e
ð�jk1cxx�jk1cyxÞ þ T2e

ð�jk1cxxþjk1cyxÞ þ T3e
ðjk1cxx�jk1cyxÞ þ T4e

ðjk1cxxþjk1cyxÞ
� �

ejot, (A.3)

where Pi, Qi, Ri, Si, and Ti are constant complex coefficients.
The time-averaged far-field energy density and the components of the time-averaged far-field intensity

which take primary values as w, f and c, can be represented as, respectively,

hei ¼ Re
rh

4

qw

qt

� �
qw

qt

� �n

þ
rI

4

qax

qt

� �
qax

qt

� �n

þ
qay

qt

� �
qay

qt

� �n� ��

þ
D

4

qax

qx

� �
qax

qx

� �n

þ
qay

qy

� �
qay

qy

� �n

þ 2n
qax

qx

� �
qay

qy

� �n� �

þ
GI

4

qax

qy
þ

qay

qx

� �
qax

qy
þ

qay

qx

� �n� �

þ
kGh
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qw

qx
� ax

� �
qw

qx
� ax

� �n

þ
qw

qy
� ay

� �
qw

qy
� ay

� �n� ��
,

hIxi ¼
1

2
Re �D

qax

qx
þ n

qay

qy

� �
qax

qt

� �n

� ð1� nÞ
D

2

qax

qy
þ

qay

qx

� �
qay
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� �n�

� kGh
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� ax

� �
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� �n�
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and

hIyi ¼
1

2
Re �D

qay

qy
þ n

qax

qx

� �
qay

qt

� �n

� 1� nð Þ
D

2

qax

qy
þ

qay

qx

� �
qax

qt

� �n�

� kGh
qw

qy
� ay

� �
qw

qt

� �n�
, (A.4) 2 (A.6)

where

qax

qt

� �
qax

qt

� �n
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� �
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þ
q2f
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� �
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qax
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þ
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� �
q2f
qyqt
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� �
q2c
qxqt
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� �n

þ
q2c
qx2

� �
q2c
qyqt

� �n

and

qw

qy
� ay

� �
qw

qt

� �n

¼
qw

qy
�

qf
qy

� �
qw

qt
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. (A.7)2(A.22)

The time-averaged far-field energy density and intensity can be obtained by substituting Eqs. (A.1)–(A.3)
into Eqs. (A.4), and (A.5) and (A.6), respectively. However, the obvious relation between the time-averaged
far-field energy density and power which are obtained by this means are not found. Therefore, to eliminate
terms that are spatially harmonic in the time-averaged far-field energy density and intensity, the locally space
averaged value is obtained as follows:

hēi ¼
ki1xki1y

p2

Z p=ki1y

0

Z p=ki1x

0

heidxdy ði ¼ 1; 2; 3Þ (A.23)

and

hĪi ¼
ki1xki1y

p2

Z p=ki1y

0

Z p=ki1x

0

h~Iidxdy ði ¼ 1; 2; 3Þ, (A.24)

where hēi and hĪi are the time- and locally space-averaged far-field smooth energy density and intensity, respectively,
and hĪi ¼ hĪ xi~i þ hĪ yi~j. For instance, Eq. (A.7) in the time-averaged far-field energy density is represented as

qax

qt

� �
qax

qt

� �n

¼ o2jk2cxj
2ðj½R1�

��j2 þ j½R2�
�þj2 þ j½R3�
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þ�Þ

n
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þ� � ½R4�

þþÞ þ ok3cxð½S1�
�� þ ½S2�

�þ � ½S3�
þ� � ½S4�

þþÞg

� fok1cyð½T1�
�� � ½T2�

�þ þ ½T3�
þ� � ½T4�

þþÞgn þ fok1cyð½T1�
�� � ½T2�

�þ þ ½T3�
þ� � ½T4�

þþÞg

� fok2cxð½R1�
�� þ ½R2�

�þ � ½R3�
þ� � ½R4�

þþÞ þ ok3cxð½S1�
�� þ ½S2�

�þ � ½S3�
þ� � ½S4�

þþÞgn

þ o2jk1cyj
2ðj½T1�

��j2 þ j½T2�
�þj2 þ j½T3�
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n
g (A.25)

where ½ ��� ¼ ½ � � expð�kcxx� kcyyÞ.
In Eq. (A.25), the terms like (|[R1]

��|2,y, |[S1]
��|2,y, |[T4]

++|2) are purely exponentially decayed
components and the other terms like ([R1]

��([R2]
�+)�,y, [S4]

++ ([R4]
++)�,y, [T4]

++ ([T3]
+�)�) are

spatially harmonic components. Therefore, using the local space-average to eliminate spatially harmonic
terms, Eq. (A.25) is expressed by

qax

qt

� �
qax

qt

� �n
" #

¼ o2jk1cyj
2ðj½T1�

��j2 þ j½T2�
�þj2 þ j½T3�

þ�j2 þ j½T4�
þþj2Þ

þ o2jk2cxj
2ðj½R1�

��j2 þ j½R2�
�þj2 þ j½R3�

þ�j2 þ j½R4�
þþj2Þ

þ o2jk3cxj
2ðj½S1�

��j2 þ j½S2�
�þj2 þ j½S3�

þ�j2 þ j½S4�
þþj2Þ. (A.26)

Apply this procedure to the other terms, for small damping, the time- and locally space-averaged far-field
smooth energy density and components of intensity are obtained by, respectively,

hēi ¼ 1
4
½ðrIo2 þ kGhÞk2

11 þ GIk4
11� � ðj½T1�

��j2 þ j½T2�
�þj2 þ j½T3�

þ�j2 þ j½T4�
þþj2Þ

þ 1
4
½ðrho2 � kGhk2

21Þ
2
ðDk4

21 þ rIo2k2
21Þ þ k2

21ðrho2ÞðkGhÞðkGhk2
21 þ rho2Þ�

� ðj½R1�
��j2 þ j½R2�

�þj2 þ j½R3�
þ�j2 þ j½R4�

þþj2Þ

þ 1
4
½ðrho2 � kGhk2

31Þ
2
ðDk4

31 þ rIo2k2
31Þ þ k2

31ðrho2ÞðkGhÞðkGhk2
31 þ rho2Þ�

� ðj½S1�
��j2 þ j½S2�

�þj2 þ j½S3�
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þþj2Þ, (A.27)
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� �
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þ
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½Dðrho2 � kGhk2

21Þ
2ok21xk2
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�þj2 � j½R3�
þ�j2 � j½R4�
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þ
1
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31Þ
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þ�j2 � j½S4�

þþj2Þ (A.28)

and

hĪ yi ¼
1
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D

2
ð1� nÞok11yk2
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� �
� ðj½T1�

��j2 � j½T2�
�þj2 þ j½T3�

þ�j2 � j½T4�
þþj2Þ

þ
1

2
½Dðrho2 � kGhk2

21Þ
2ok21yk2

21 þ ðrho2Þðok21yÞðkGhk21Þ
2
�

� ðj½R1�
��j2 � j½R2�

�þj2 þ j½R3�
þ�j2 � j½R4�

þþj2Þ

þ
1

2
½Dðrho2 � kGhk2

31Þ
2ok31yk2

31 þ ðrho2Þðok31yÞðkGhk31Þ
2
�

� ðj½S1�
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þþj2Þ. (A.29)
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A.2. Below the critical frequency

Below the critical frequency, the only BDFW with wavenumber k2c is a far-field solution and the OPSW,
displacement potential function c, is a pure near-field solution. Therefore, the far-field solution composed of
the transverse displacement w and displacement potential functions f can be rewritten as, respectively,

w ¼ fP1e
ð�jk2cxx�jk2cyyÞ þ P2e

ð�jk2cxxþjk2cyyÞ þ P3e
ðjk2cxx�jk2cyyÞ þ P4e

ðjk2cxxþjk2cyyÞgejot (A.30)

and

f ¼ fQ1e
ð�jk2cxx�jk2cyyÞ þQ2e

ð�jk2cxxþjk2cyyÞ þQ3e
ðjk2cxx�jk2cyyÞ þQ4e

ðjk2cxxþjk2cyyÞgejot. (A.31)

Substituting Eqs. (A.30) and (A.31) into Eqs. (A.4)–(A.6), the time-averaged far-field energy density and
intensity of out-of-plane waves in the Mindlin plate are obtained. In this case, like the previous case, the local
space-average is applied to the time-averaged far-field energy density and intensity in order to eliminate
spatially harmonic terms.

The time- and locally space-averaged far-field smooth energy density and intensity are expressed by

hēi ¼ 1
4
½ðrho2 � kGhk2

21Þ
2
ðDk4

21 þ rIo2k2
21Þ þ k2

21ðrho2ÞðkGhÞðkGhk2
21 þ rho2Þ�

� ðj½R1�
��j2 þ j½R2�

�þj2 þ j½R3�
þ�j2 þ j½R4�

þþj2Þ, (A.32)

hĪ xi ¼
1
2
½Dðrho2 � kGhk2

21Þ
2ok21xk2

21 þ ðrho2Þðok21xÞðkGhk21Þ
2
�

� ðj½R1�
��j2 þ j½R2�

�þj2 þ j½R3�
þ�j2 þ j½R4�

þþj2Þ (A.33)

and

hĪ yi ¼
1
2
½Dðrho2 � kGhk2

21Þ
2ok21yk2

21 þ ðrho2Þðok21yÞðkGhk21Þ
2
�

� ðj½R1�
��j2 � j½R2�

�þj2 þ j½R3�
þ�j2 � j½R4�

þþj2Þ. (A.34)

Appendix B. Classical solution of out-of-plane motions in the Mindlin plate

The equations of out-of-plane motion in the Mindlin plate excited by a harmonic point force are given by

D
q2ax

qx2
þ
ð1� nÞ

2

q2ax

qy2
þ
ð1þ nÞ

2

q2ay

qxqy

" #
þ kGh

qw

qx
� ax

� �
� Ir

q2ax

qt2
¼ 0, (B.1)

D
ð1� nÞ

2

q2ay

qx2
þ

q2ay

q2y
þ
ð1þ nÞ

2

q2ax

qxqy

" #
þ kGh

qw

qy
� ay

� �
� Ir

q2ay

qt2
¼ 0 (B.2)

and

�kGh
q2w
qx2
þ

q2w

qy2
�

qax

qx
�

qay

qy

� �
þ rh

qw2

qt2
¼ Fdðx� x0Þdðy� y0Þe

jot, (B.3)

where F is the amplitude of external point force and (x0,y0) is the excitation position.
When the plate is simply supported along its edges, the transverse displacement w, and the angles of rotation

due to bending ax and ay can be expressed by using the double trigonometric series of the spatial variables x

and y, respectively,

wðx; y; tÞ ¼
X1
m¼0

X1
n¼0

Amn sin
mpx

Lx

� �
sin

npy

Ly

� �
ejot, (B.4)

axðx; y; tÞ ¼
X1
m¼0

X1
n¼0

Bmn cos
mpx

Lx

� �
sin

npy

Ly

� �
ejot (B.5)
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and

ayðx; y; tÞ ¼
X1
m¼0

X1
n¼0

Cmn sin
mpx

Lx

� �
cos

npy

Ly

� �
ejot, (B.6)

where Amn, Bmn and Cmn are modal participation factors of variables.
Using the double series of the sine function, the external force is also expressed by,

Fdðx� x0Þdðy� y0Þ e
jot ¼

X1
m¼0

X1
n¼0

F mn sin
mpx

Lx

� �
sin

npy

Ly

� �
ejot. (B.7)

By the orthogonality of sine functions in Eq. (B.7), the modal force factor Fmn is obtained by

Fmn ¼
4F

LxLy

sin
mpx0

Lx

� �
sin

npy0

Ly

� �
. (B.8)

Substituting Eqs. (B.4)–(B.6) into Eqs. (B.1)–(B.3), the following matrix equation is obtained:

�11 �12 �13

�21 �22 �23

�31 �32 �33

2
64

3
75

Amn

Bmn

Cmn

8><
>:

9>=
>; ¼

0

0

Fmn

8><
>:

9>=
>;, (B.9)

where

�11 ¼ kGchðmp=LxÞ,

�12 ¼ �Dcfðmp=LxÞ
2
þ ðnp=LyÞ

2
ð1� nÞ=2g þ rIo2 � kGch,

�13 ¼ �Dcðmp=LxÞðnp=LyÞð1þ nÞ=2,

�21 ¼ kGchðnp=LyÞ,

�22 ¼ �Dcðmp=LxÞðnp=LyÞð1þ nÞ=2,

�23 ¼ �Dcfðmp=LxÞ
2
ð1� nÞ=2þ ðnp=LyÞ

2
g þ rIo2 � kGch,

�31 ¼ kGchfðmp=LxÞ
2
þ ðnp=LyÞ

2
g � rho2,

�32 ¼ �kGchðmp=LxÞ

and

�33 ¼ �kGchðnp=LyÞ.

By Eq. (B.9), the transverse displacement w and the angles of rotation due to bending ax and ay can be
rewritten as, using only the modal participation factor Amn,

wðx; y; tÞ ¼
X1
m¼0

X1
n¼0

Amn sin
mpx

Lx

� �
sin

npy

Ly

� �
ejot, (B.10)

axðx; y; tÞ ¼
X1
m¼0

X1
n¼0

Amn

ð�13�21 � �23�11Þ

ð�12�23 � �13�22Þ

� �
cos

mpx

Lx

� �
sin

npy

Ly

� �
ejot (B.11)

and

ayðx; y; tÞ ¼
X1
m¼0

X1
n¼0

Amn

ð�22�11 � �12�21Þ

ð�12�23 � �13�22Þ

� �
sin

mpx

Lx

� �
cos

npy

Ly

� �
ejot, (B.12)
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where

Amn ¼

4F

LxLy

sin
mpx0

Lx

� �
sin

npy0

Ly

� �

kGch
mp
Lx

� �2

þ
np
Ly

� �2

�
mp
Lx

� �
ð�13�21 � �23�11Þ

ð�12�23 � �13�22Þ
�

np
Ly

� �
ð�22�11 � �12�21Þ

ð�12�23 � �13�22Þ

( )
� rho2

" # . (B.13)
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